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This is part 3 of our work describing experiments in which explicit information
was obtained on all the derivatives, i.e. spatial derivatives, d/dx;, and temporal
derivatives, 9/0¢, of velocity and temperature fields (and all the components of
velocity fluctuations and temperature) at the Reynolds number Re;~ 10*.

This part is devoted to the issues concerning temperature with the emphasis
on joint statistics of temperature and velocity derivatives, based on preliminary
results from a jet facility and the main results from a field experiment. Apart from
a number of conventional results, these contain a variety of results concerning
production of temperature gradients, such as role of vorticity and strain, eigen-
contributions, geometrical statistics such as alignments of the temperature gradient
and the eigenframe of the rate-of-strain tensor, tilting of the temperature gradient,
comparison of the true production of the temperature gradient with its surrogate.
Among the specific results of importance is the essential difference in the behaviour
of the production of temperature gradients in regions dominated by vorticity and
strain. Namely, the production of temperature gradients is much more intensive
in regions dominated by strain, whereas production of temperature gradients is
practically independent of the magnitude of vorticity. In contrast, vorticity and strain
are contributing equally to the tilting of the vector of temperature gradients.

The production of temperature gradients is mainly due to the fluctuative strain,
the terms associated with mean fields are unimportant. It was checked directly (by
looking at corresponding eigen-contributions and alignments), that the production of
the temperature gradients is due to predominant compressing of fluid elements rather
than stretching, which is true of other processes in turbulent flows, e.g. turbulent
energy production in shear flows. Though the production of the temperature gradient
and its surrogate possess similar univariate PDFs (which indicates the tendency to
isotropy in small scales by this particular criterion), their joint PDF is not close
to a bisector. This means that the true production of the temperature gradient is
far from being fully represented by its surrogate. The main technical achievement is
demonstrating the possibility of obtaining experimentally joint statistics of velocity
and temperature gradients.
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1. Introduction and motivation

There is an increasing interest in the behaviour of passive scalars in turbulent flows,
as reflected in the large number of publications on various aspects of the issue, that
have been reviewed in Majda & Kramer (1999), Shraiman & Siggia (2000), Warhaft
(2000), Dimotakis (2001), Falkovich, Gawedzki & Vergassola (2001), Villermaux
(2001) and Brethouwer, Hunt & Nieuwstadt (2003). The need to understand and
predict micro-mixing in a variety of flows has promoted a number of studies devoted
to the small-scale structure of scalar fields including the gradient, G = V6, of the
scalar, 6. For example, better understanding of micro-mixing is vital for improving
scalar molecular mixing models in turbulent flows, such as in the case of reactive
fluids, since the mixing process controls the required fluxes of heat or chemical species
to the reaction zone. Another example concerns stochastic Lagrangian models for the
scalar fluctuations in a plume and their probability density functions (Sawford 2001).
These stochastic models, however, depend on unproved concepts about micro-mixing
mechanisms.

Just as velocity derivatives (both vorticity and strain) play an outstanding role
in the dynamics of turbulence, the gradient, G, is of the utmost importance in
the evolution of the field of the passive scalar. Most common questions asked are
about the statistical characteristics of the scalar itself (such as PDFs and structure
functions/spectra) and (an)isotropy. All these are the consequence of the action
of the turbulent flow on the passive scalar, which are reflected in joint statistical
properties of the passive scalar and velocity fields. In the context of small-scale
(dissipative) structure(s), these joint statistical properties relate to the derivatives
of the corresponding fields. The experimental results for the two-point correlation,
((0u1/0x1),(30/0x1)7 )/ ((Qu1/0x1)*)/2((06/0x1)*), indicate that the field of velocity
derivatives produces scalar gradients on scales of about two Kolmogorov scales, i.e.
on very small scales (Gibson, Ashurst & Kerstein 1988). Numerical simulations, as
reviewed by Tsinober (2001), Vedula, Yeung & Fox (2001) and Brethouwer et al.
(2003), give considerable attention to this last aspect.

The central issue here is the (one-way) interaction of the passive scalar gradient,
G, with the field of velocity derivatives, du;/dx;, as seen from the equation (which is
just the consequence of the advection-diffusion equation, 36/t +u(30/3x;) = kV?6),
first given by Corrsin (1953) and Batchelor & Townsend (1956):

DG,‘ 8I/tk
Dr ~ %oy,
It is seen from this equation that the evolution of the gradient, G, is subject to
the effects of strain, rotation or tilting due to vorticity (accounted for by the term
—Goui/dx; = —Gjsij — (1/2)g;xw;Gi) and molecular diffusion. The equation (1.1)
governs both the dynamics of the magnitude of G and its direction.

We can obtain from (1.1) the corresponding ‘energy’ equation

1d

5502 = —G;Gsix + GikV*G; (1.2)

and the equation for the unit vector, G=G /G:

+ kV?G;. (1.1)

—G; =7+ VT, 1.3
& + (1.3)
where 7; = —akauk/ax,» + (A},»(A}j aksjk and VT stands for viscous terms. The vector T
is orthogonal to G.
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One of the most important features of the small-scale evolution of passive scalars is
their positive net production, —(G;Gysix) > 0, and its rate, —(G;Gys;/G*) > 0. This
was observed in numerical simulations in different flows (Ruetsch & Maxey 1991,
1992; Tsinober 2001 ; Tsinober & Galanti 2001; Vedula et al. 2001; Brethouwer et al.
2003 and references therein) at rather small Taylor microscale Reynolds numbers
Re;~100. No similar results have been obtained so far in the laboratory (with the
exception of Su & Dahm (1996), who were able to obtain the alignments between the
vector, G, and the eigenframe, 4, of the rate-of-strain tensor, s;;, in the far field of a
turbulent jet flow at Re;~ 50), especially for high-Reynolds-number flows. Instead, a
surrogate quantity, the mixed skewness,

So = ((Qu1/9x1)(860/9x1)7) /((du1/3x1)*)*{(06/9x1)7), (1.4)

was measured in several flows, as reviewed by Sreenivasan & Antonia (1997). For
isotropic flows ((du;/0x)(06/0x1)*) = (2/15)(G;Gysix). However, surrogates of the
type (duy/dx1)", (00/9x1)" and (duy/0x1)"(06/0x1)" represent adequately only the
means of the true quantities. Other properties (spectral, fractal, scaling, etc.) of
the surrogates and of the true quantities are generally different.

By true quantities we mean quantities such as G;Gys;; which are geometrical
invariants, i.e. they remain invariant under the full group of rotations in contrast
to other non-invariant combinations of velocity and temperature derivatives. For
this reason, the geometrical invariants are most appropriate for studying physical
processes in turbulent flows, their structure and universal properties. Moreover, in
using a single velocity or temperature difference or derivative, a number of important
geometrical relations of extreme significance can be missed. For example, having
single derivatives it is impossible to see the degree of alignment between the scalar
gradient, G;, and the stretching vector, WiG‘ = —Gjs;;, which is at the core of the
production of G2, i.e. of the small-scale structure of passive scalars in turbulent flows.
Similarly, having single derivatives, it is impossible to separate and study the effects of
strain and of rotation or tilting of G due to vorticity, which influences the evolution of
G in a qualitatively different manner, as far as is known from numerical simulations
and simple models (Ruetsch & Maxey 1991, 1992; Tsinober & Galanti 2001, 2003;
Gonzalez 2002; Brethouwer et al. 2003).

It was also realized from a number of numerical simulations (Ashurst et al. 1987;
Ruetsch & Maxey 1991, 1992; Pumir 1994; Flohr 1999; Tsinober 2001; Tsinober &
Galanti 2001, 2003; Vedula et al. 2001; Brethouwer et al. 2003) that the essential
evolution of passive scalars, contained in the interaction between the scalar gradient,
G;, and the velocity gradients, du;/dx;, depends strongly not only on the magnitude
of G, strain, s;;, and vorticity, w;, but also on the joint geometry of the scalar gradient,
G;, and the field of velocity gradients, du;/dx;. This is true of the magnitude of both
WiGS = —Gjs;; and WiG‘“ = —(1/2)&;xw; G and the production term, —G;G ;s;;, which
is just equal to the scalar product G+ W% = —G;G;s;; = GWC cos(G, W). It can
be represented also as —G;G;s;; = —G?A; cos*(G, A) showing the importance of
relative orientation of G and the eigenframe, 4, of the rate-of-strain tensor, s;;, and
the relation between separate eigen-contributions, —G> A, cos*(G, 4,) (no summation
over «); here A, are the eigenvalues of s;;.

The evolution of G in a turbulent flow is associated with creation of fine structure
in the field of the passive scalar, both at the level of the gradient, G;, itself and
at the level of its gradients, dG;/dx,. The positiveness of the term —(G;Gys;;)
(and —(G,;Gysi/G?)) is associated with two aspects. First, it represents the rate of
production of the ‘dissipation’ x (G?(t)) of the ‘energy’ of the passive scalar, so that
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the latter is continuously amplified by the stretching process reflected in the term
—(G;Gysii). Production of the gradients, G*(¢), of a scalar field is associated with the
fine structure of the passive scalar, 0, itself. Secondly, the term —(G;Gys;;) is balanced,
at least in part, by the ‘dissipation’, —«{(0G;/dx;) (3G;/9x;)), of the ‘energy’ of the
vector G. The consequence is that the gradients, dG;/dx;, associated with the fine
structure of G, are amplified too.

In concluding this section we reiterate that all the quantities mentioned above, such
as —G(duy/0x;), —&xw;G/2, —G;Gysix and a number of others (see next section)
are essentially mixed quantities, involving both the field of velocity derivatives (strain
and vorticity) and the gradients of the scalar field. This reflects the obvious fact that
the properties of a passive scalar field are determined by the (one-way) interaction of
both fields. Hence, the importance of studying the joint statistical properties of both
scalar gradient, d06/dx;, and the velocity gradients, du,/0x;.

2. Main objectives

The above overview comprises the basis for setting as the main goal of the work
reported here the study of the joint statistical properties of the velocity derivatives
and the gradient of the passive scalar. We stress that at high Reynolds numbers,
except for the mixed skewness, nothing is known about the issues mentioned above
and many other important issues. It should also be emphasized that these key issues
cannot be addressed via conventional approaches using phenomenological, scaling
and similar arguments, which inherently are unable to handle the geometrical (and
phase) relations in turbulent flows.

More specifically, the first and main objective of the reported work is a systematic
study of the joint statistical properties of the field of velocity derivatives, i.e. rate-of-
strain tensor, s;;, and vorticity, w;, and the temperature gradient, G;, in an atmospheric
surface layer at Re; ~ 10*. It is done in a similar way to that in the field experiment
on the ground of Kfar Glikson kibbutz, a few kilometres to the north-east of Pardes-
Hanna, as described in Kholmyansky & Tsinober (2000) and Kholmyansky, Tsinober
& Yorish (2001a, b) (see Part 1, Gulitski et al. 2007).

The main basis of the work is a new data set obtained for all three components of
the velocity fluctuations vector, u;, all nine components of the spatial velocity gradients
tensor, du;/dx;, and the temporal velocity derivatives, du; /9t (all without invoking the
Taylor hypothesis) with synchronous data on fluctuations of temperature, 6, its spatial
gradient, d6/0x;, and temporal derivative, 90/9t, along with the corresponding data
on the mean flow. The subsequent post-processing and analysis were performed along
several lines in order to achieve a deeper understanding of the basic properties and
processes of the fine structure of the passive scalar. It is the availability of such data
which allows us to address the issues which are essentially beyond phenomenology.
Typical examples are represented by the following quantities.

(i) The stretching vector, WC¢ = — G, du;/dx; = — Gjsij — (1/2)eijxw; Gy, and its
components, W = —G s;j and W = —(1/2)g;jxw; G. The vector W is responsible
for the production of G2, whereas Wl.G’” (which is normal to G) rotates/tilts the vector
G. Of interest also is the vector 7; = —(A;kauk/ax,- + Giéjéks,k, which rotates the

unit vector, (A}i =G;/G.

(ii) The production, —G;Gs;;, and its rate, —Gist,-j/Gz.

(ili) The  eigen-contributions to  the  production, —G?A;cos*(G, i),
—G? A, c08? (G, 4y), —G* Az cos® (G, A3), the rates, —A; cos’ (G, 4;), —A, cos® (G, 4),
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—Ajzcos® (G, 43), and the similar contributions to (W¢)%, (W), (W%)> and the
corresponding rates.

(iv) Geometrical statistics, associated with the above quantities, such as cos(G, ),
cos(G, 4;), cos(G, WE), cos(G, W) and cos(T, A).

Having all the derivatives of the velocity and temperature field enables us to
address the issue of isotropy in a variety of ways. The simplest one, related to the
joint statistics of both fields, is via the relation ((du;/9x,)(36/9x1)*) = (2/15)(G;Gsix)
which is valid for isotropic flow.

There is a claim that vorticity influences essentially the statistics of passive scalars
(Gonzalez & Paranthoén 2004 and references therein), though there is no such
evidence in other works (Brethouwer et al. 2003 and references therein). Finally, the
issue of anisotropy in small scales is intimately related to the direct and bi-directional
coupling of small and large scales (Shen & Warhaft 2000; Warhaft 2000; Tsinober
2001). We can cope with the latter issue looking at joint statistics of the derivatives
and the quantities themselves (which are available too) in a similar way to that in
Kholmyansky & Tsinober (2000) and references therein.

3. Preliminary results in a jet facility

The main purpose of these experiments was to check the feasibility of obtaining
sensible results on joint statistics of the velocity derivatives and the gradient of a
passive scalar.

The jet facility, based on the calibration unit, was described briefly in Part 1. The
jet was produced by a nozzle with outlet diameter D = 30 mm, the flow velocity at the
outlet was about 10 ms~!. The measurement point was at the distance 4.3D ~ 13 cm
from the nozzle.

The first example is shown in figure 1. As in many other cases, there are three main
outcomes. First, the possibility of obtaining such statistics is demonstrated. Secondly,
the results appear to be qualitatively the same as those obtained at much smaller
Reynolds numbers Re;~ 100 in DNS in a cubic domain with periodic boundary
conditions and large-scale forcing Fr = C(sinx + sin y + sinz) on the right-hand side
of the Navier—Stokes equations (Tsinober & Galanti 2001). Thirdly, there exists an
essential difference in the behaviour of the production of temperature gradients in
regions dominated by vorticity and strain. Namely, the production of temperature
gradients is much more intensive in regions dominated by strain, whereas it is
practically independent of the magnitude of vorticity. The results shown in figure 1
appear to be of a universal nature, at least qualitatively, as can be seen from
comparison between the results at Re;~ 100 from DNS in a cubic domain, the
experimental results at Re;~800 in a jet flow and, as shown below, in a field
experiment in the atmospheric surface layer at several heights at Re; up to 8000 (see
figure 7).

The next example is on geometrical statistics, see figure 2 which shows the
alignments between the temperature gradient, G, and the eigenframe, 4;, of the rate-
of-strain tensor, s;;. Again it is seen that, at least at the qualitative level, the results from
experiments and DNS are the same (and they are the same for the field experiments as
well, see figure 19). The main effect, the alignment between the temperature gradient
and the eigenvector, 43, corresponding to the compressive eigenvalue, A; < 0, is
captured well in the measurements and is again similar to that obtained from DNS.
Weaker alignment in the experiments is most probably due to some under-resolution
of the velocity and temperature gradients. This kind of alignment was observed also
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FIGURE 1. (a, b) Conditional averages of the normalized production of temperature fluctua-
tions, —G;Gysik, and (c, d) its rate, —G;Gysix/G?, conditioned on w? s> and G2 (a, c)
Experiment with a heated jet; (b, d) direct numerical simulation of Navier—Stokes equations.
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FIGURE 2. PDFs of the cosine of the angle between the temperature gradient, G, and the
eigenframe, 4;, of the rate-of-strain tensor, s;;. (a¢) The experiment with a heated jet; (b) direct
numerical simulation of Navier-Stokes equations.

in experiments by Su & Dahm (1996) and in DNS by Flohr (1999) and Tsinober &
Galanti (2001, 2003).

Finally, the third example shows that the alignment between the temperature gradi-
ent and the eigenvector, 43, corresponding to the compressive eigenvalue, is associated
with the main contribution to the production term, —G;G ;s;; = —G? Ay cos?(G, Ay),
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FiGure 3. Conditional averages of the normalized contribution of the term, associated with the
eigenvector, 43, of the rate-of-strain tensor, s;;, to the production of temperature fluctuations,

conditioned on w?, s> and G2. (a) The experiment with a heated jet; (b) direct numerical
simulation of Navier—Stokes equations.

and the rate of production, —G,-st,-j/Gzz — Agcos’(G, 4;), namely, it is due to
—G? A3 cos*(G, 43) (figure 3). Again, the similarity between the results from laboratory
experiments and DNS can be seen clearly. We will see below that this similarity is
much broader and remains valid also for the field experiments at much larger
Reynolds numbers.

The production of the temperature gradient is due to the predominant compression
of fluid elements rather than stretching.

4. Results of field experiments

As mentioned, our main purpose was to study the quantities associated with the
production of gradient, G, of the passive scalar. The quantity responsible for this
process is the stretching vector, WS = —Gyduy/dx; = —Gs;; — (1/2)e;jxG joy. One
of the key quantities is the term —G;Gs;; in (1.2) associated with the production
of the magnitude, G, of the temperature gradient, G. Another quantity is the one
responsible for the change in the direction of G. This is the tilting vector, 7; =
— (A}k(auk/ax,-) + a,-a,.aks,-k (see (1.4)) which rotates the unit vector, 6,. =G;/G. Both
are related to non-diffusive effects associated with the field of velocity derivatives.
The effects directly related to diffusivity (i.e. the Laplacian of G, etc.) are beyond the
scope of our work.

4.1. Some general results
4.1.1. Temperature

The measurements (Part 1) were performed at several heights above the ground
from 0.8 to 10m. The span of the mean temperature, 7, was about 2K. The
mean temperature was measured independently, at six heights from 0.5 to 11.5m.
The vertical temperature profile, averaged over the duration of the presented runs
(about 3h), is shown in figure 4(a). (The temperature at the lowest height is most
probably underestimated because of insufficient delay before reading the value after
the return of the device from the top position.) The linear fit, also shown on the plot,
is found to be log;((z) =15.703 — 1.3187. The thermal stability at the site, when our
measurements were performed, can be described as slight instability. The typical PDF
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FIGURE 4. (a) Vertical temperature profile, averaged over the duration of the runs;
(b) Example of PDF of the temperature fluctuations, 6.

Height (m) 0.8 12 2.0 3.0 45 7.0 10.0
9 RMS (K) 0.46 0.45 0.43 0.40 0.33 0.29 0.23

TaBLE 1. The RMS values of 6 for various heights.
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FIGURE 5. (a) Examples of the power spectrum of 6 (for height 2m) and (b) of the
normalized mixed velocity—temperature structure function (—4/3 Yaglom law).

of the temperature fluctuations, 6, is presented in figure 4(b). The RMS values of 6
for various heights are shown in table 1.

An example of the power spectrum of 6 is plotted in figure 5(a) for the height
of 2m. In figure 5(b) we show an example of the normalized structure function,
—(Auy(A0))(4eor/3) "5 Auy =uy(x1+7r)—ui(x1); AO =0(x; +r)—0(x1); €6 = ((VO)?)
is the dissipation of the passive scalar variance; « is the thermal diffusivity of air.

4.1.2. RDT-like terms

As in the case of velocity derivatives, our main interest here was in the field
of derivatives of temperature fluctuations, 96/dx,. However, in order to be able
to limit ourselves to measurements of this field only, it was necessary to estimate
the influence of the processes associated with the mean temperature and velocity
gradients, 7 /dx, = @ and dU;/dx;, on the production of G, = 00/0x;.
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Heigh (m) 0.8 1.2 2.0 3.0 45 7.0 10.0
Maximum ratio  0.0008  0.0008  0.0004 0.0004 0.003 0.005 0.0004

TABLE 2. Maximum absolute values of the ratio of the terms, associated with the mean flow
gradient (4.1), to the main production term, —(G;Gys;y).
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FIGURE 6. (a) Temperature derivative skewness, (b) flatness and (c) mixed derivative skewness,
Sr, versus Reynolds number, Re;. Asterisks, present work, the explanation of other symbols
see Sreenivasan & Antonia (1997).

There are three quantities of this kind in the equation for G*:
—G;5i0T /0x;, —(1/2)G (O x w) = —(1/2)0 - (G X w), —G;G;U;/dx;.  (4.1)

It is known from numerical simulations for moderate Reynolds numbers
(Tsinober & Galanti 2001; Vedula et al. 2001) that the means —(G;sy)0T/dxy,
—(1/2)0@ - (G x w) and —(G;G;)0U;/dx; are small. We see from table 2 that in our
experiments these quantities are small compared to the production term, —(G;Gys;y).

4.2. Skewness and flatness

Most of the quantities derived from our experiments and reported here are of the
order of two or less with respect to temperature. All our data are satisfactory for
obtaining them. Higher-order moments, such as skewness and flatness, are much
more sensitive to any flaws in the data. At 4.5m and higher, the signal-to-noise ratio
happened to be insufficient for good estimates of such moments. Other reasons led
to the same effect at the lowest height of 0.8 m. Therefore in this section we present
only the results, measured at 1.2, 2.0 and 3.0m.

In figure 6, we reproduce the plots from (Sreenivasan & Antonia 1997, figures 7-9)
with the addition of the points from the runs of our field experiment mentioned
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FIGURE 8. (a) Conditional averages of the normalized square of the stretching vector, (W%)?,
and (b) its rate, (W%)?/G?, conditioned on w?, s> and G2.

above. In figure 6(a) the skewness of 96/dx;, namely, ((30/3x;)*)/{((36/0x;)*)*?, is
plotted versus the Reynolds number, Re;. Figure 6(b) shows the Re;-dependence of
the derivative flatness, ((30/dx;)*)/{(86/9x)*)%. Finally, in figure 6(c) there is a plot of
the mixed derivative skewness, Sy = ((du;/0x)(360/9x1)*)/{(du;/dx1)*)/>((06/3x,)?).
Our points reasonably fit the results of other authors, presented in figure 6.

4.3. Role of vorticity and strain

The main result here is, as already mentioned in § 3, the same as at lower Reynolds
numbers both in experiments and DNS. Namely, the production of temperature
gradients is much more intensive in regions dominated by strain, whereas this
production is practically independent of (or weakly dependent on) the magnitude
of vorticity. This is true both of production, —G;G;s;;, and its rate, —G,Gs;;/ G,
(figure 7) as well as of the square of the stretching vector, (W%)?, and its rate,
(WS)?/G? (figure 8). Thus in this respect, our results do not confirm the predictions
of Gonzalez & Paranthoén (2004) and previous papers that vorticity influences
essentially the statistics of passive scalars. However, as expected, the tilting of the
gradient, G, ie. the change of its direction by 7; = — 6k(8uk/8x,-) + @iGijsjk is
equally influenced by strain and vorticity, as can be seen both from the conditional
averages of T2 on w? and s? (figure 9) and the joint PDFs of T? with »? and with
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s? (figure 10). This is reminiscent of the influence of vorticity on the evolution of
material elements, studied by Girimaji & Pope (1990) and Guala et al. (2005). The
tilting is insensitive to the magnitude of G, as seen from the figure 9.

A similar behaviour is observed when looking at separate eigen-contributions to
the above quantities, and is described in the next section.

4.4. Eigen-contributions

By the expression ‘eigen-contribution’ we mean the separate terms in, for example,
representation

—G,Gjs;j = —G? A, cosz(G, AM)— G’ A, cosz(G, ) — G* A, cosz(G, A3).

The first result we would like to show in this section concerns the relation of
the eigen-contributions in the above representation with strain, vorticity and the
magnitude of the temperature gradient. The corresponding conditional averages are
presented in figure 11(a) and exhibit tendencies as described in the previous section,
i.e. much stronger influence of strain than of vorticity.

This is true also of other quantities, e.g. (W)?=G?A] cos*(G, 4), (figure 12a)
and corresponding rates, G;Gs;;/G* = A cos*(G, 4) (figure 11b) and (W)?*/G* =
A? cos*(G, i) (figure 12b).
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Useful information is contained also in the conditional averages of production of
temperature fluctuations, —G;Gs;;, and its rate, —G; G ;s;; / G?, on the eigenvalues, Ay.
The main feature is the dominance of the contribution associated with compression
at large Aj (figure 13).
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The PDFs of some quantities mentioned above are shown in figure 14. For example,
the PDFs of eigen-contributions to (W%)?, corresponding to pure stretching and
compressing, are practically the same and contribute equally (because the eigenvalues
enter here as A?).

It is impossible to separate the eigen-contributions to the square of the tilting
vector, 71;, since they enter in products. Indeed,

(Gxw)?

T? = A cos’ (G, i) — [Arcos® (G, 4)])* + (1/4)G 7 [G*o® — (G @)*]

GrSak

+G7'[G x ] [Aycos (G, Ay)i,] (no summation over ).  (4.2)

Therefore we show in figure 15 only conditional averages of T2 on A; (k=1, 2, 3).
The summary of the eigen-contributions is presented in table 3.

An additional view on the relations between G;G;s;;, G;G;s;;/G* T?* and Ay
(k=1,2,3) is given by the corresponding joint PDFs (figures 16-18).

5. Geometrical statistics
By the term geometrical statistics we denote alignments between a variety of vectors.
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Value a 08(m) 12(m) 20(m) 30(m) 45(m) 7.0(m) 10.0(m)
1 =071 —0.64 —0.76 —0.67 —0.84 —0.69 —1.17
—(G?Ayc0s*(G,4y)) 2 0.11 —0.05 —0.06 —0.07 —0.08 —0.09 —0.12
3 1.60 1.69 1.81 1.74 1.92 2.05 2.29
1 0.09 0.26 0.30 0.23 0.25 0.26 0.27
(G*AZ cos? (G, Ay)) 2 0.14 0.03 0.03 0.02 0.03 0.02 0.03
3 0.77 0.72 0.67 0.75 0.73 0.72 0.70
1 —428 —2.11 —2.55 —2.49 —3.69 —4.51 —5.45
—(A, c0s*(G,hy)) 2 —040 —0.21 —0.23 —0.29 —0.41 —0.49 —0.59
3 5.69 3.33 3.78 3.78 5.09 6.00 7.05
1 0.32 0.35 0.41 0.34 0.36 0.37 0.37
(A2 cos*(G,hy)) 2 0.06 0.04 0.04 0.04 0.04 0.04 0.04
3 0.61 0.61 0.54 0.63 0.60 0.60 0.59
1 0.53 0.52 0.51 0.49 0.47 0.51 0.47
(Ag)/{s?)11? 2 0.09 0.10 0.09 0.07 0.06 0.09 0.06
3 —0.62 —0.61 —0.60 —0.56 —0.53 —0.60 —0.53
1 0.40 0.39 0.40 0.40 0.41 0.40 0.41
(A2)/(s?) 2 0.04 0.04 0.04 0.05 0.05 0.04 0.06
3 0.56 0.57 0.56 0.55 0.55 0.56 0.55
1 0.48 0.53 0.54 0.52 0.76 0.46 0.60
(A3))(s?)3? 2 0.01 0.02 0.02 0.02 0.01 0.02 0.02
3 =073 —0.82 —0.83 —0.86 —1.19 —0.80 —1.04

TaBLE 3. Contribution of terms associated with the eigenvalues, A, of s;; to the production
of temperature fluctuations, —G;Gs;j = — G*>Ay cos*(G, i), and its rate, —G;Gs;;/G* =
— A cos*(G, i), and square of the stretching vector, (W% )? = G>A? cos*(G, A), and its rate,
(WY)?/G* = A7 cos’(G, i), at various heights from the field experiment. The last rows show
the means, the mean squares and the mean cubes of the eigenvalues of the rate-of-strain tensor,
Ay 52 =S8ijSij =A% + A% + Ag; 8ijS jkSki =A% + A% + Ag.
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FIGURE 16. Joint PDFs of the normalized production of temperature fluctuations, —G;G ;s;; =

—G?Ag cos?(G, i), with the eigenvalues of the rate of strain tensor, Ay. (a) k=1, correlation
coefficient =0.073; (b) k=2, 0.080; (c¢) k=3, —0.141.

Among the main known features are the alignments of the temperature gradient,
G, and the eigenframe, 4, of the rate-of-strain tensor, s;;. These are shown in
figure 19 and are qualitatively the same as in the DNS results at Re; ~100 in a
cubic domain, mentioned above, the experimental results at Re, ~800 in a jet flow
and those reported in experiments by Su & Dahm (1996) and in DNS by Flohr
(1999) and Tsinober & Galanti (2001). The alignments of the temperature gradient,
G, and the eigenframe, 4, of the rate-of-strain tensor, s;;, become more pronounced
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the eigenvectors, 4, of the rate-of-strain tensor, s;;.

at larger strains and magnitude of the temperature gradient, G, and weaker at larger
enstrophy, * (figure 20).
A related kind of alignment of special interest is the alignment between the

temperature gradient, G;, and the stretching vector,

we =

—G(0uy /0x;), since their
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scalar product, G;WF = —G;G(duy /9x;) = —G;Gysix, 1s just the production term in
(1.2). Therefore, it is natural to expect that the PDF of cos(G, W) should be positively
skewed, as observed in figure 21(a). A similar behaviour is observed for the alignment
between the temperature gradient, G;, and the stretching vector, W,.G" = —GiSik,
(figure 21b). Both exhibit stronger alignment for larger strains and magnitudes of the
temperature gradient, G, and weaker alignment for larger enstrophy, w?.

We recall that
u k

Wl =-G
! £ Bxi

— 1 Gy Gy — _ 1
= —GkS,-k — 58,-jija)k, VVI = —GjS,'j, VVZ = —§8ijka)ij.

The vector WiGX is responsible for the production of G2, whereas W (which is normal
to G) rotates/tilts the vector G, and cos(G, W) = 0 because G L. WS, Therefore,
in order to characterize the effects of tilting of G it is useful to look at the quantity
responsible for the change of its direction, i.e. the change of the direction of the unit
vector, CA}i = G;/G. This is the inviscid tilting vector, 1; = — 6k(auk/ax,~) + 6,-6;,— (A}ks_ik,
which enters the equation (1.3) governing the evolution of the unit vector, Gi. Typical
results on the alignments of the tilting vector, T, and the eigenframe, 4;, of the rate-
of-strain tensor, s;;, are shown in figure 22. The first thing to note is that both pure
stretching (k=1) and pure compression (k = 3) result in identical alignment between
Y and the corresponding eigen-directions, 4; and 4;. The second feature is that the
Y, A alignments are weakly sensitive to the magnitude of strain and vorticity, but
change considerably with the magnitude of the temperature gradient, G.
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FIGURE 22. PDFs of the cosine of the angle between the inviscid tilting vector, T, and the
eigenvectors, A, of the rate-of-strain tensor, s;;. (a) k=1 —3 for the whole field; (b—c)

conditioned on the high values of w?, s> and G?: (b) k=1, (c) k=2, (d) k=3.

5.1. Production versus its surrogate

As mentioned, it is customary to represent the production of the temperature gradient,
—G,Gsir, by its surrogate, —(du;/dx,)(30/3x;)>. For isotropic flow

((u1/0x1)(30/9x1)%) = (2/15)(G; Gsix).-

Moreover, it appears from our measurements that the PDFs of (du;/9x;)(36/9x;)* and
(2/15)G;Gys;y are very similar as well (figure 23), indicating the tendency to isotropy
in small scales by this particular criterion. However, this still does not mean that
the true production, G;Gysi, is fully represented by its surrogate, (du;/dx;)(d6/dx;)>.
Indeed, as seen from their joint PDF, this is not the case as it would be if the shape
of this joint PDF were close to the bisector.

5.2. Vorticity versus G

The differently normalized enstrophy production, w;w;s;;/(w’s), and production of
temperature gradient, —G;Gs;;/(G?s), shown in figure 24, reveal two aspects. The
first is that, again, the behaviour is qualitatively the same for a Taylor microscale
Reynolds number of the order of 10? and 10*. The second aspect is that the production
of enstrophy is considerably different from that of temperature gradient.

Another reason for comparison of @ and G is that for the inviscid and non-diffusive
flows the scalar product, w - G, is a Lagrangian pointwise invariant, i.e. it is conserved
along fluid particle trajectories. The PDF of cos(w, G) is shown in figure 25.

An additional aspect of comparison is shown in figure 26 with the alignments of
the vorticity tilting vector, ¥, and the temperature gradient tilting vector, Y'¢, with
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FIGURE 26. PDFs of the cosine of the angle between the vorticity tilting vector, T, and the
temperature gradient tilting vector, Y'¢, with eigen-frame of the rate-of-strain tensor, s; -

eigen-frame of the rate-of-strain tensor, s;;. Only a qualitative resemblance can be
noted. Both Y and Y'¢ tend to be orthogonal to the intermediate eigenvector, 4,
and to be aligned with the other two eigenvectors.

6. Concluding remarks

The main technical achievement is that the possibility of obtaining experimentally
joint statistics of velocity gradients and temperature gradients is demonstrated and
a number of related results are obtained. Another aspect is the implementation of
a multi-hot—cold-wire technique which allowed us to perform measurements of the
streamwise derivatives without invoking the Taylor hypothesis.

The results obtained in this work are in full conformity with those obtained in
our previous field experiments (Kholmyansky & Tsinober 2000; Kholmyansky et al.
2000, 2001a,b; Galanti et al. 2003). Being the first repetition of an experiment, in
which explicit information is obtained on the field of velocity derivatives, it gives
us confidence in both experiments. Therefore, the results reported here confirm the
main conclusions made before. Namely, results from high Re, field experiments are
similar to those obtained in experiments in laboratory turbulent grid flow and in DNS
of Navier—Stokes equations in a cubic domain with periodic boundary conditions,
both at Re; ~ 10%. An important aspect is that this similarity is not only qualitative,
but to a large extent quantitative. The main difference between the two is in the
‘length’ of the inertial range. This means that the basic physics of turbulent flow at
high Reynolds number, Re; ~ 10% at least qualitatively, is the same as at moderate
Reynolds numbers, Re; ~10?. This is true of such basic processes as enstrophy
and strain production, geometrical statistics, the role of concentrated vorticity and
strain, reduction of nonlinearity and non-local effects, fluid particle accelerations and
quantities related to temperature and its gradient.

Among the specific results of importance is the essential difference in the behaviour
of the production of temperature gradients in regions dominated by vorticity and
strain. Namely, the production of temperature gradients is much more intensive
in regions dominated by strain, whereas production of temperature gradients is
practically independent of the magnitude of vorticity. In contrast, vorticity and strain
are contributing equally to the tilting of the vector of temperature gradients. The
production of temperature gradients is mainly due to the fluctuative strain, the terms
associated with mean fields are unimportant.

It was checked directly (by looking at corresponding eigen-contributions and
alignments) that the production of the temperature gradients is due to predominant
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compressing of fluid elements rather than stretching, which is true of other processes
in turbulent flows, e.g. turbulent energy production in shear flows.

Though the production of the temperature gradient and its surrogate possess
similar univariate PDFs (which indicates the tendency to isotropy in small scales by
this particular criterion), their joint PDF is not close to a bisector. This means that
the true production of the temperature gradient is far from being fully represented
by its surrogate.

Our results were obtained with cold wires 2.5 pm thick. Therefore, they were under-
resolved in the smallest scales. In order to obtain adequate resolution in the smallest
scales, the cold wires should be about 1 um thick along with improvements in the
system such as (i) the probe construction requiring further miniaturization of its
individual arrays as well as of the whole probe, and (ii) further improvement of the
calibration system along with the use of higher-quality electronic equipment. This will
allow us to address a number of issues concerning the small scales of the temperature
field not touched on in this study.
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